A Clustering-Oriented Closeness Measure Based on Neighborhood Chain and Its Application in the Clustering Ensemble Framework Based on the Fusion of Different Closeness Measures
نویسندگان
چکیده
Closeness measures are crucial to clustering methods. In most traditional clustering methods, the closeness between data points or clusters is measured by the geometric distance alone. These metrics quantify the closeness only based on the concerned data points' positions in the feature space, and they might cause problems when dealing with clustering tasks having arbitrary clusters shapes and different clusters densities. In this paper, we first propose a novel Closeness Measure between data points based on the Neighborhood Chain (CMNC). Instead of using geometric distances alone, CMNC measures the closeness between data points by quantifying the difficulty for one data point to reach another through a chain of neighbors. Furthermore, based on CMNC, we also propose a clustering ensemble framework that combines CMNC and geometric-distance-based closeness measures together in order to utilize both of their advantages. In this framework, the "bad data points" that are hard to cluster correctly are identified; then different closeness measures are applied to different types of data points to get the unified clustering results. With the fusion of different closeness measures, the framework can get not only better clustering results in complicated clustering tasks, but also higher efficiency.
منابع مشابه
Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کامل